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Chapter 1

Probability: Intuition,
Formalism

1.1 Uncertainty, randomness, and probabil-

ity

Frequentist Approach to Probability: Imagine the experiment of flip-
ping a coin. This experiment is known to be a random experiment. (I admit,
there exist serious controversies). It is random, because there is uncertainty
beforehand about which side of the coin will appear when the coin is flipped.
But what does it exactly mean, when we say the probability of the next flip
being heads is 0.5?

When faced with an uncertain event, the frequentist approach tends to
repeat the experiment over and over again. According to this approach proba-
bility of an event represents the relative frequency with which an event occurs
after conducting the same experiment infinitely many times. Since conduct-
ing an experiment infinitely many times is not possible, the results in the
limit are considered, meaning that for instance in coin flip experiment, the
experiment is repeated until the observed frequency is a good estimate of the
true probability of occurrence of a particular event.

Bayesian Approach to Probability: In many cases probabilities can
not be associated with repeated trials. For instance, the probability that
it will rain in a certain day. In such settings Bayesian approach introduces
subjective estimates of probabilities, representing the degree of belief that an
event occurs. This approach is interrelated with Bayesian statistics, a field
of statistics that deals with modeling uncertainty and has useful applications
in many fields including machine learning and artificial intelligence.

1



2 CHAPTER 1. PROBABILITY: INTUITION, FORMALISM

1.2 Algebra of Sets

Definition 1. (Outcome)
An outcome ω of a random experiment is one possible realization of conduct-
ing the experiment.

� Flipping a coin: ω1 = H, ω2 = T

Definition 2. (Sample space)
A sample space Ω is the set of all possible outcomes of an experiment.

1. Flipping a coin: Ω = {H,T}
2. Rolling a dice experiment: Ω = {1, 2, 3, 4, 5, 6}
3. Three rounds of Russian roulette experiment: Ω = {D,LD,LLD}.

Definition 3. (Event)
An event is a set of outcomes contained in the sample space, Ω. An event is
a subset of Ω.

1. Flipping a coin: Ω = {H,T}
� Event A: getting H ⇒ A = {H} ∈ Ω

2. Flipping two coins: Ω = {HH,HT,TH,TT}
� Event A: getting H,H ⇒ A = {H,H} ∈ Ω
� Event B: getting T,H ⇒ B = {T,H} ∈ Ω
� Event C: getting H,T ⇒ C = {H,T} ∈ Ω

Definition 4. (algebra)
A set of events, F , is an algebra if

i: A ∈ F implies that Ac ∈ F .
ii: A ∈ F and B ∈ F implies that A ∪ B ∈ F and A ∩ B ∈ F .
iii: Ω ∈ F and ∅ ∈ F .

The events in F are called measurable events in F .

Definition 5. (σ-algebra)
A non-empty collection A of subsets of a set Ω is called a σ-algebra if given
A,A1,A2, · · · ∈ A we have

i: Ac ∈ A
ii:

⋃
n An ∈ A
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iii:
⋂

n An ∈ A

The definition implies that an algebra of sets (F) is a σ−algebra (A), if
it is closed under countable intersections. Suppose An ∈ F is a countable
family of events measurable in F , and A = ∩nAn is the set of outcomes in
all of the An, then A ∈ F , too.

Proposition 1. An algebra closed under countable intersections is also closed
under countable unions, and conversely.

An algebra is automatically a σ−algebra if Ω is finite. If Ω is infinite, an
algebra might or might not be a σ−algebra.

Example 1.1. Let Ω be the set of integers and A ∈ F if A is finite or Ac

is finite. This F is an algebra (check), but not a σ−algebra. For example, if
An leaves out only the first n odd integers, then A is the set of even integers,
and neither A nor Ac is finite.

□
In a σ−algebra, it is possible to take limits of infinite sequences of events,

just as it is possible to take limits of sequences of real numbers.

Lemma 1. Let σ-algebra A in Ω, and A1,A2, · · · ∈ A,

i: Ω ∈ A
ii: ∅ ∈ A

Proof. Since A is non empty, we can find A ∈ A. Thus Ω = A
⋃
Ac ∈ A.

Then taking complements shows ∅ ∈ A.

Lemma 2. Given a class C of σ-algebras on Ω, the intersection is also a
σ-algebra.

Proof. Because we have shown that every σ-algebra contains Ω, we know
that the intersection is non-empty. Now let A,A1,A2, . . . be in every σ-
algebra. Clearly every σ-algebra in the class contains

⋂
nAn, hence so does

the intersection. Similarly with
⋃

n An and Ac.

Note that a union of σ-algebras is not necessarily a σ-algebra. However,
a union of σ-algebras generates a σ-algebra in an appropriate sense.

Definition 6. Given a collection C of subsets of Ω, we let σ(C) be the smallest
σ-algebra containing C.

Note that the definition makes sense since the set of all subsets of Ω is a
σ-algebra. Therefore, the class of σ-algbras containing C is non-empty and
σ(C) is the intersection of of the class by the previous lemma.
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1.3 Set Operations

As discussed, events are set of outcomes. Hence, set operations also apply to
them.

Definition 7. Union, Intersection and Complement of Events

1. The union of two events A and B denoted A∪B consists of outcomes
that are either in A or B.

2. The intersection of two events A and B denoted A ∩ B consists of
outcomes that both in A and B.

3. The complement of an event A denoted Ac is the set of all outcomes
in Ω not contained in A, Ac = Ω\A.

Definition 8. Two events A and B are mutually exclusive or disjoint if
they have no outcomes in common, i.e. A ∩ B = Ø.

1.4 Venn Diagrams

A Venn diagram is a graphical representation of sets and set operations. Each
Venn diagram includes a rectangle representing the universal set, and circle(s)
inside the rectangle representing sets. Figure 1.1 shows a few examples for
two sets.

A B

A ∩BΩ

A B

A ∪BΩ

A B

A−BΩ

(a) Intersection (b) Union (c) Subtraction

Figure 1.1: Venn diagrams for two sets

Figure 1.2 shows examples of Venn diagrams with three sets.

1.5 Probability of an event

Given an experiment and a sample space Ω, the objective of probability is
to assign to each event A a number IP(A), called the probability of the event
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A B

C

A B

C

A B

C

(a) (A ∪B ∪ C) (b) A− (B ∪ C) (c) (A ∪B ∪ C)c

Figure 1.2: Venn diagrams

A, which will give a precise measure of the chance that A will occur. In an
experiment with N outcomes that are equally likely the probability of any
outcome A is IP(A) = 1/N.

Definition 9. The probability of an event is the sum of the probabilities of
the outcomes that make up the event

IP(A) =
∑
ω∈A

p(ω) .

Example 1.2. Suppose we toss a coin 4 times, at each time either a H
(heads) or T (tails) appears. The outcomes are: TTTT, TTTH, TTHT,
TTHH, THTT, . . ., HHHH. Hence, the sample space is

Ω = {TTTT,TTTH,TTHT,TTHH,THTT, . . . ,HHHH}.

The number of outcomes in the sample space is 16, that is |Ω| = 16, where
| . | represents the cardinality of a set. If each outcome ω is equally likely,
then,

p(ω) =
1

16
∀ ω ∈ Ω.

Let A be the event that the first two tosses are H, then A includes 4 outcomes,

A = {HHHH, HHHT, HHTH, HHTT} ,

each having probability 1/16. Therefore,

Prob{first two are H} = IP(A) =
∑
ω∈A

p(ω) =
∑
ω∈A

1

16
=

4

16
=

1

4
.

□
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1.6 Axioms of Probability

Axiom 1. For any event B, 0 ≤ IP(A) ≤ 1.

Axiom 2. IP(Ω) = 1, and therefore IP(∅) = 0.

Axiom 3. If A1,A2, . . . ,An are mutually exclusive events, then

IP (A1 ∪ A2 ∪ · · · ∪ An) =
n∑

i=1

IP(Ai).

Axiom 3 can be generalized to infinitely many mutually exclusive events when
n → ∞,

IP (A1 ∪ A2 ∪ · · · ) =
∞∑
i=1

IP(Ai).

In the experiment of flipping a coin Ω = {H,T} and also H ∪ T = Ω.

IP(H ∪ T) = IP(H) + IP(T) = IP(Ω) = 1

Proposition 2. For any event A, IP(A)+IP(Ac) = 1 or, IP(A) = 1− IP(Ac).

In the experiment of flipping a coin IP(T) = 1− IP(H), since one event is
the complement of the other.

Example 1.3. Suppose we flip an unfair coin n times for which IP(H) = p.
We are interested in the probability of the event that we observe more than
one heads?
Let A be the event that we observe more than one heads. Notice that Ac will
be the event that zero heads are observed.

IP(Ac) = Prob{all flips land on tail} = (1− p)n

IP(A) = 1− (1− p)n.

□

Proposition 3. If A and B are mutually exclusive, then IP (A ∩ B) = 0 and
A ∩ B = ∅.

Proposition 4. For any two events A and B,

IP (A ∪ B) = IP(A) + IP(B)− IP (A ∩ B) .
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For any three events A, B, C,

IP (A ∪ B ∪ C) = IP(A) + IP(B) + IP(C)

−IP (A ∩ B)− IP (A ∩ C)− IP (B ∩ C)

+IP (A ∩ B ∩ C) .
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Chapter 2

Combinatorics and Counting

2.1 Introduction to Combinatorics and Count-

ing Thechniques

In discrete mathematics, combinatorics refer to techniques used for counting.
Some of the basic principles used in combinatorics include additive and mul-
tiplicative principles, permutations, combinations, binomial coefficients and
Pascal’s triangle.

Definition 10 (Some definitions related to counting).

Distinct Objects: all of the objects that we want to arrange or select
are distinct.
Example: Letters in CHEMISTRY .

Identical Objects: some of the objects that we want to arrange or select
are identical.
Example: Letters in STATISTICS are not all distinct, STATISTICS.

Order is important: when the order matters, CAB is different than
ABC.

9
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Order is not important: When the order does not matters, CAB is
same as ABC.

Sampling without replacement: means that after choosing an item, it
is thrown away and cannot be chosen again. In this case, we are not allowed
to choose one object repeatedly.
Example: If we want to form three letter words from ABC, we are not al-
lowed to form BBB.

Sampling with replacement: means that after choosing at item, it
is put back and can be chosen again. We are allowed to choose one object
repeatedly.

2.2 Additive Principle

Disjoint Sets. The additive principle states that for two disjoint sets A
and B, the cardinality of their union is the sum of their cardinalities,

|A ∪B| = |A|+ |B|.

The additive principle can be generalized to n sets. Given n pairwise
disjoint sets A1, A2, . . . , An, then

|A1 ∪ · · · ∪ An| = |A1|+ · · ·+ |An|.

When sets are not disjoint. The inclusion-exclusion principle generalizes
the additive principle to when the sets aren’t disjoint.

Definition 11 (Inclusion-exclusion principle). For two sets A and B,

|A ∪B| = |A|+ |B| − |A ∩B|.

For three sets A, B, and C

|A ∪B ∪ C| = |A|+ |B|+ |C|
− |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.
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2.3 Multiplicative Principle

The multiplicative principle is about making choices in stages. In the simplest
form of it, the multiplicative principle states that if you have m choices, and
for each choice you have n second choices, then altogether you have mn
choices.

Example 2.1. Suppose you want to choose an optional course from your
curriculum and you have two options: French or Psychology. Both Mr. Jones
and Mr. Smith offer French course. Psychology course is offered by three
instructors: Mr. Brown, Mr. Frenk and Mr. Boyd. Then, in total you have
2× 3 = 6 choices.

□

Remark 1. The cardinality of Cartesian product of two sets A and B, de-
noted as |A× B| also follows from the multiplicative principle.

|A× B| = |A| |B|.

Remember that the Cartesian product A×B consists of all ordered pairs (a, b)
such that a ∈ A and b ∈ B. Formally,

A× B = {(a, b) : a ∈ A, b ∈ B}

Example 2.2. Suppose set A = {0, 1, 2} and set B = {3, 4}. Then the
Cartesian product A× B consists of 6 elements, since |A| = 3 and |B| = 2.

A× B = {(0, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4)}.

Proposition 5 (General Form of Multiplicative Principle). A set consists of
ordered collections of k-tuples with n1 choices for element 1, n2 choices for
element 2 ,..., and nk choices for element k. The number of possible k-tuples
are n1n2 · · ·nk.

Remark 2. Multiplicative principle applies to the product of sets. Given
finite sets A1, A2, . . . , An, their product A1×A2×· · ·×An consists of ordered
n-tuples (a1, a2, . . . , an) where each ai belongs to the corresponding set Ai. In
order to choose one of these ordered n-tuples, for the first stage you have a
choice of choosing any one of the elements of A1 to be a1. The number of
choices at stage 1 is the cardinality of A1. For the second stage you have
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|A2| choices for a2, and so forth. The multiplicative principle gives us the
standard formula for the cardinality of the product

|A1 × A2 × · · · × An| =
n∏

i=1

|Ai|.

Example 2.3 (Fixed price menu). A fixed price menu consists of the follow-
ings: appetizer, main food, and dessert. There are 3 types of appetizers, 4
types of main dish, and 2 types of desserts.
Appetizers: n1 = 3 , Mains: n2 = 4 , Desserts n3 = 2. Hence, the number
of meals is: n1 × n2 × n3 = 24. Let ai,mi and di denote type i of each item
in the menu. Table 2.1 lists all possible menus.

(a1,m1, d1) (a1,m1, d2) (a1,m2, d1) (a1,m2, d2)
(a1,m3, d1) (a1,m3, d2) (a1,m4, d1) (a1,m4, d2)
(a2,m1, d1) (a2,m1, d2) (a2,m2, d1) (a2,m2, d2)
(a2,m3, d1) (a2,m3, d2) (a2,m4, d1) (a2,m4, d2)
(a3,m1, d1) (a3,m1, d2) (a3,m2, d1) (a3,m2, d2)
(a3,m3, d1) (a3,m3, d2) (a3,m4, d1) (a3,m4, d2)

Table 2.1: List of all possible menus.

□

2.4 Permutations

Permutation is about arrangement. A permutation is an arrangement of
objects without repetition when order is important. Depending on whether
objects are identical or distinct and whether we arrange all of the objects or
only some of them, we will use different counting techniques.

Permutation of All Distinct Objects. Suppose we have a set A of n
elements. How may permutations are there on set A?

Proposition 6. (Permutation using all of the distinct objects)
A permutation of n distinct objects, arranged into one group of size n, without
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repetition, and order being important is:

nPn = P (n, n) =
n!

(n− n)!
=

n!

0!
= n!

Obviously, in the first stage, we have a choice among one of the n elements
to go first. In the second stage, there are n−1 remaining elements, and choose
one of them to go second. At the next stage, chose one of the remaining n−2
elements to go next. And so forth until the last stage, when there’s only one
element left, so it goes last. Thus, the number of permutations of a set of n
elements is

n(n− 1)(n− 2) · · · 2 · 1.
This last expression is usually abbreviated n! and read “n factorial” or “fac-
torial n”.

Example 2.4. Find all permutations of the letters in set A = {a, b, c}.

Since we are using all three objects, we can arrange the letters in 3P3 =
P (3, 3) = 3! = 6 ways, which are

abc, acb, bac, bca, cab, cba.

When choosing a permutation of ”a,b,c”, there are 3 choices for the first
letter, 2 remaining choices for the second (since we cannot choose the first
letter again), 1 remaining choice for the third. Hence, there are 3 · 2 · 1 = 6
choices altogether.

□

Example 2.5. Find all permutations of the letters in set A = {a, b, c, d}.

Since we are using all four objects, we can arrange the letters in 4! = 24
ways, with 4 choices for the first letter, 3 choices for the second, 2 for the
third letter and 1 for the last letter, 4× 3× 2× 1 = 4!.

abcd bacd cabd dabc
abdc badc cadb dacb
acbd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcba
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□

Tree diagrams. Tree diagram can be used to illustrate permutations. Con-
sider Example 2.5, where we choose a permutation of the 4 letters from a
set A = {a, b, c, d}. The choices will be made in 4 stages according to the
following diagram:

◦�
�
�
�
�
�
�
�
�
��
a

�
�
��

b

@
@
@@ c

B
B
B
B
B
B
B
B
B
BB d

��
��

ab

acH
HHH ad

��
��

ba

bcH
HHH bd

��
��

ca

cbH
HHH cd

��
��

da

dbH
HHH dc

��
�� abc

abd

    acb
```̀ acd

adbPPPP adc

��
�� bac

bad

    bca
```̀ bcd

bdaPPPP bdc

��
�� cab

cad

    cba
```̀ cbd

cdaPPPP cdb

��
�� dab

dac

    dba
```̀ dbc

dcaPPPP dcb

abcd
abdc
acbd
acdb
adbc
adcb
bacd
badc
bcac
bcda
bdac
bdca
cabd
cadb
cbad
cbda
cdab
cdba
dabc
dacb
dbac
dbca
dcab
dcba

The first stage chooses one of the four letters to go first. That gives us
our first branching of the tree at the left. After we’ve taken that branch,
we’ll be at one of the four nodes or states labelled a, b, c, or d. At this second
stage, we choose a second letter that can’t be the same as the first. In each
case we have three choices this time, so we’ll take one of the three branches
to get to a state labelled by two letters. At the third stage, we’ve got two
choices, so for each state there are two branches leading to a state labelled
with three letters. At this state the last letter is determined, so there’s only
one branch to a leaf of the tree.
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Sterling’s approximation for factorials. The factorial function n! grows
very fast with n. James Sterling (1692–1770) proposed an approximation
method to compute factorials of large numbers. Named after James Sterling,
the Sterling’s approximation is

n! ≈ nne−n
√
2πn

This approximation is fairly good even for numbers as small as 10 where the
approximation has an error of less than 1%. It’s accuracy increases with n.

n n! approx ratio
1 1 0.922137 1.084
2 2 1.91900 1.042
3 6 5.83621 1.028
4 24 23.5062 1.021
5 120 118.019 1.016
6 720 710.078 1.014
7 5040 4980.40 1.012
8 40320 39902.4 1.011
9 362880 359536 1.0093
10 3628800 3598690 1.0084
11 39916800 39615600 1.0076
12 479001600 475687000 1.0070

Permutation of k Distinct Objects from n Objects. One variant of
permutations is the case when we don’t want complete permutations of a
set of n elements, rather we are interested in partial permutations, say k-
permutation. If k ≤ n, a k-permutation is an ordered listing of just k elements
of a set of n elements.

Proposition 7. (Permutation using some of the distinct objects)
A permutation of n (distinct) objects, arranged in groups of size k, without
repetition, and order being important is:

nPk = P (n, k) =
n!

(n− k)!

We can use the multiplicative principle to determine the k-permutations
of a set of n elements. In the first stage, we have a choice among n elements
to go first. In the second stage, there are n − 1 remaining elements to go
second. At the third stage, n − 2 elements to go third. Continuing in this
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fashion, at the kth stage, there will be (n−k)+1 remaining elements. Hence,
the number of k-permutations of a set of n elements is

n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
.

where the equality follows from the fact that

[n(n− 1)(n− 2) · · · (n− k + 1)]× (n− k)! = n!

Example 2.6. Find all two-letter permutations of the letters in set A =
{a, b, c}.
Since we are using two of three objects, we can arrange the letters in 3P2 =
P (3, 2) = 3! = 6 ways, which are

ab, ac, ba, bc, ca, cb.

□

Example 2.7. Find all two-letter permutations of the letters in set A =
{a, b, c, d}.

ab ba ca da
ac bc cb db
ad bd cd dc

□

Example 2.8. Find all three-letter permutations of the letters in set A =
{a, b, c, d}.

abc bac cab dab
abd bad cad dac
acb bca cba dba
acd bcd cbd dbc
adb bda cda dca
adc bdc cdb dcb

□
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Permutation When There Are Identical Objects. Another variant
of permutations is the case when the elements in the set are identical. For
instance, when we want to count the permutations of letters in set A =
{S, T,A, T, I, S, T, I, C, S}. Obviously there are repetitions in letters, so ex-
changing them will not create different permutation.

Proposition 8. (Permutation using all of the objects some of which are
identical)
A permutation of n objects such that n1 of them are identical of type 1, n2 of
them are identical of type 2, ..., and nk of them are identical of type k, (i.e.
n = n1 + n2 + · · ·+ nk), without repetition, and order being important is:

P
[
n, (n1, n2, . . . , nk)

]
=

n!

n1!× n2!× . . . nk!

Example 2.9. Find all permutations of the letters in set A = {B,O,B}.

Remind that without repetition means we are not allowed to form ”OOO”,
but we are allowed to form ”BOB”, as if first B is different than second B.
Order matters means that ”BOB” is different than ”OBB”.

One way to approach this question is to first assume that letters are all
distinct. Let’s write the second ”B” as ”b”. We already know that arranging
3 objects out of 3 (without repetition, and order being important) can be done
in nPn = 3P3 = 3! = 6 ways, which are BOb, BbO, OBb, ObB, bBO, bOB.
However, if we write ”b”’s in these 6 arrangements as ”B”, we will get BOB,
BBO, OBB, OBB, BBO, BOB. In fact, there are two repetitions from each
word BOB, BBO, OBB. To what number should we divide 6 to get rid of
repetitions? The answer is 2!. In 2! ways we are repeating these three words.
So the final answe will be 6/2! = 3 ways which are BOB, BBO, OBB.

□

If you are still not convinced, consider the following example which con-
tains 3 identical letter.

Example 2.10. Consider the word ”LULL”. Let’s imagine this word as
L1UL2L3. There are 4! = 24 ways to permute them.
UL1L2L3 UL1L3L2 UL2L1L3 UL2L3L1 UL3L1L2 UL3L2L1

L1UL2L3 L1UL3L2 L1L2UL3 L1L2L3U L1L3UL2 L1L3L2U
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L2UL1L3 L2UL3L1 L2L1UL3 L2L1L3U L2L3UL1 L2L3L1U
L3UL1L2 L3UL2L1 L3L1UL2 L3L1L2U L3L2UL1 L3L2L1U

Now let’s revert them back to simple ”l”.
ULLL ULLL ULLL ULLL ULLL ULLL
LULL LULL LLUL LLLU LLUL LLLU
LULL LULL LLUL LLLU LLUL LLLU
LULL LULL LLUL LLLU LLUL LLLU

We observe that there are 6 ”ULLL”, 6 ”LULL”, 6 ”LLUL” and 6 ”LLLU”.
6× (number of unique words) = 24, with 6 = 3! and 24 = 4!.

□

Example 2.11. Consider the word ”STATISTICS”. Here are the frequency
of each letter: S = 3, T = 3, A = 1, I = 2, C = 1, there are 10 letters in
total.

P
[
10, (3, 3, 1, 2)

]
=

10!

3!× 3!× 1!× 2!
= 50400

□

2.5 Combinations

Combination is about selection. A combination is a selection of objects
without repetition where order is not important. Combination is also called
”Committee Selection”. Imagine a committee to be selected for the thesis
defense of a Ph.D. student. It is not possible to select same person twice
for the committee. It makes also no difference whether we select person ”A”
before ”B”, since a committee made of ”A,B” (A selected before B) is the
same as a committee made of ”B,A” (B selected before A).

Notice that in neither permutation nor combination repetition is not al-
lowed. Hence, the only difference between the definition of a permutation
and a combination is whether order is important or not. Textbooks may use
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ordered and unordered sets to refer order being important and order being
not important respectively.

Proposition 9. A combination of n distinct objects, arranged in groups of
size k, without repetition, and order being important is:

nCr = C(n, k) =

(
n

k

)
=

n!

(n− k)!× k!

A combination of size k from a set S of size n is just a subset of size k.
It’s more often it’s called a k-subset when the size is specified. A k-subset
is related to k-permutations but they’re not the same. A k-permutation is
a listing of k distinct elements of S where the order of the elements in the
listing is relevant. But for a k-subset, the elements are not listed in any
particular order; that is, order doesn’t matter.

Let’s take an example. Let S be the 5-element set S = {a, b, c, d, e}.
There are 5 · 4 · 3 = 60 3-permutations of S, but there are far fewer 3-subsets
of S. For instance, one 3-subset is {a, b, c}. But this subset is associated to 6
of the 3-permutations, namely, abc, acb, bac, bca, cab, and cba. There are 6,
of course, because there are 3! = 6 full permutations of a set of 3 elements.

In general, each k-subset is associated to k! of the k-permutations. Since

there are
n!

(n− k)!
of the k-permutations altogether, that implies that the

number of k-subsets of a set of n elements is exactly
n!

k!(n− k)!
.

Example 2.12. Find all two-letter combinations of the letters ”ABC”.
Note that the question can be framed as ”how many committees can be made
from ”A,B,C”. Knowing that AB = BA, AC = CA, BC = CB, there are
only three committees.

3C2 = C(3, 2) =

(
3

2

)
=

3!

(3− 2)!× 2!
= 3

□
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2.5.1 Binomial coefficients.

Combinations are used in the binomial theorem to give the coefficients of the
expansion (a+ b)n. This fact is formalized in Binomial Theorem. Remember
that binomials are polynomials with two terms.

Theorem 1. (Binomial Theorem).

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k =

n∑
k=0

n!

k!(n− k)!
xkyn−k.

for 0 ≤ k ≤ n and n ≥ 0, where 0! = 1. The expression(
n

k

)
=

n!

k!(n− k)!

is called a binomial coefficient. When y = 1, the binomial theorem reduces
to:

(1 + x)n =
n∑

k=0

(
n

k

)
xk.

One might wonder how combinations
(
n
k

)
appear as the binomial coeffi-

cients. Let us first consider the expansion of binomial theorem when n = 4.

(x+ y)4 =

(
4

0

)
x0y4 +

(
4

1

)
x1y3 +

(
4

2

)
x2y2 +

(
4

3

)
x3y1 +

(
4

4

)
x4y0

= y4 + 4x3y + 6x2y2 + 4xy3 + x4

Notice the coefficients when n = 4,

1 4 6 4 1

Consider the coefficient 6 of x2y2. There are 4 factors (x+ y) when n = 4.

(x+ y)4 = (x+ y)(x+ y)(x+ y)(x+ y)

When you expand the product you’ll get a term x2y2 if you choose an x
from exactly 2 of the 4 factors (x + y), and y2 coming from the remaining
two factors. There are

(
4
2

)
= 6 ways of choosing 2 of the four factors, and

each one contributes one x2y2, so the coefficient of x2y2 in the product will
be

(
4
2

)
= 6.
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2.5.2 Pascal’s Triangle

Let’s explore a few more cases from binomial coefficients. Consider the bi-
nomial x+ y, with different powers n. The following illustrates (x+ y)n for
n = 1, 2, 3, 4, 5.

(x+ y)0 = 1
(x+ y)1 = x+ y
(x+ y)2 = x2 + 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x+ y)5 = x5+5x4y+10x3y2+10x2y3+5xy4+y5

Let’s extract the coefficients from each binomial.

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1

As discussed previously, the coefficients in these polynomials are combi-
nations.

(
4
0

)
= 1

(
4
1

)
= 4

(
4
2

)
= 6

(
4
3

)
= 4

(
4
4

)
= 1

(
3
0

)
= 1

(
3
1

)
= 3

(
3
2

)
= 3

(
3
3

)
= 1

(
2
0

)
= 1

(
2
1

)
= 2

(
2
2

)
= 1

(
1
0

)
= 1

(
1
1

)
= 1

(
0
0

)
= 1

Blaise Pascal (1623–1662) and Pierre de Fermat (1601–1665) studied these
binomial coefficients in the context of probability in the 1600s. Their corre-
spondence resulted in some of the first significant theory of probability and
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a systematic study of binomial coefficients. Because of Pascal’s publication
of their results, this particular arrangement of the binomial coefficients in a
triangle is called Pascal’s triangle.

2.5.3 Observations From Pascal’s Triangle

There are lots of interrelations among these entries in Pascal’s triangle.

Observation 1. Each element in the table is the sum of the two elements
directly above it. The numbers along the sides are all 1s, and each entry in
the middle is the sum of the two entries above it.

Observation 2. The sum of the numbers on a diagonal of Pascal’s triangle
equals the number below the last summand. For example, 1+2 = 3, 1+2+3 =
6, 1 + 3 = 4, 1 + 3 + 6 = 10, etc.

This fact is expressed formally in the identity:

p∑
k=0

(
k + n− 1

n− 1

)
=

(
p+ n

n

)

Here is one simple way to prove the identity. First observe that
(
k+n−1
n−1

)
is the number of ways of dividing k objects into n subsets: line up k+ n− 1
objects and select n−1 of them to mark the boundaries of the n subsets. The
number of ways of choosing n− 1 from k+ n− 1 is, of course,

(
k+n−1
n−1

)
. Now

the sum on the left hand side is the number of ways of dividing less than
or equal to p objects into n subsets, one term for each number of objects
k = 0, . . . , p. The right hand side is the number of ways of dividing p objects
into n + 1 subsets. By ignoring the first subest, every way of dividing p
objects into n subsets gives exactly one way of dividing k objects into n− 1
subsets where k is p minus the number of elements in the ignored subset.
Conversely, every way of dividing k ≤ p objects into n subsets gives rise to
exactly one way of dividing p objects into n + 1 subsets: just add a subset
with p − k objects. Therefore, the two sides of the above identity must be
equal.
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Observation 3. One important identity of the many important identities
that hold for binomial coefficients is this one:(

n

k

)
=

(
n

n− k

)
You can see why that’s true in three different ways. First, they’re both

equal to
n!

k!(n− k)!
. Second as coefficients in the expansion of (x + y)n, the

coefficient of xkyn−k is equal to the coefficient of ykxn−k. And third, each
subset of k elements in a set of size n has a complement that has n − k
elements.

Observation 4. the recurrence relation(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
,

Observation 5. Note that in each row, n is fixed. Let’s call that the nth

row; the top row is then the 0th row. Note that the numbers in the nth row
sum to 2n. (

n

0

)
+

(
n

1

)
+ · · ·+

(
n

n− 1

)
+

(
n

1

)
= 2n

For instance, when n = 5, we have 1+ 5+ 10+ 10+ 5+ 1 = 32 = 25. That’s
because these binomial coefficients tell us the number of subsets of various
sizes of a set of n elements. Since there are 2n subsets in all, they have to
add up to 2n.

These binomial coefficients tell us the number of subsets of various sizes
of a set of n elements. Since there are 2n subsets in all, they have to add up
to 2n.

Proof. Using binomial theorem

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k

and letting both x and y be 1, we get

2n =
n∑

k=0

(
n

k

)
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2.6 Probabilities Involving Combinatorics

Example 2.13. An urn contains 6 white and 9 black balls. If 4 balls are
to be randomly selected without replacement, what is the probability that the
first 2 selected are white and the last 2 selected are black?
We define the events
W1: the first ball drawn is white, W2: the second ball drawn is white,
B3: the third ball selected is black, B4: the fourth ball selected is black.
We are interested in the probability of IP(W1,W2,B3,B4).

Answer 1. Note that

IP(W1,W2,B3,B4) = IP(B4,B3,W2,W1)

Therefore, we can write

IP(B4,B3,W2,W1) = IP(B4|B3,W2,W1)IP(B3,W2,W1)

and continue decomposing the last part as

IP(B3,W2,W1) = IP(B3|W2,W1)IP(W2,W1)

and again

IP(W2,W1) = IP(W1)IP(W2|W1).

Putting them altogether:

IP(B4,B3,W2,W1) = IP(B4|B3,W2,W1)IP(B3|W2,W1)IP(W2|W1)IP(W1).

Since we are sampling without replacement, it is easy to observe that

IP(B4,B3,W2,W1) =
8

12
· 9

13
· 5

14
· 6

15

Answer 2. (
6
1

)(
9
0

)(
15
1

) ·
(
5
1

)(
9
0

)(
14
1

) ·
(
9
1

)(
4
0

)(
13
1

) ·
(
8
1

)(
4
0

)(
12
1

) =
6

15
· 5

14
· 9

13
· 8

12

□
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Example 2.14. Suppose an urn contains 8 red balls and 4 white balls. We
draw 2 balls from the urn without replacement. If we assume that as we draw
the each ball in the urn is equally likely to be drawn, what is the probability
that both balls drawn are red?

Let R1 and R2 denote respectively the events that the first and the second
ball drawn is red. Now given that the first ball selected is red, there 7 remain-
ing red balls and 4 white balls and so IP(R2|R1) = 7/11. As IP(R1) = 8/12,
the desired probability is

IP(R1 ∩ R2) = IP(R1)IP(R2|R1) = (8/12)(7/11) = 14/33.

Note that another way to work this problem is use combinations by think-
ing of drawing a pair of balls in quick succession:

IP(R1 ∩ R2) =

(
8
1

)(
4
0

)(
12
1

) ·
(
7
1

)(
4
0

)(
11
1

) =
8

12
· 7

11
=

14

33
.

□
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Chapter 3

Conditional Probability and
Independence

What is the probability that the outcome of a dice roll is 2 given that the
outcome is an even number? Many times we need to compute probabilities
under the assumption that some event has occurred. We deal with this type
of experiments using conditional probabilities. Independence of events is also
an important concept in probability. When two events are independent, the
outcome of one experiment does not affect the likelihood of occurring for the
other event. Observing 10 heads in 10 trials of a fair coin flip does not make
the next trial to be more likely a tail. Because, coin flips are independent
trials. This chapter introduces the concept of conditional probability and
elaborates conditions that are required for independence of events.

3.1 Conditional Probability

The conditional probability IP(A|B) is the probability that A occurs given
that B occurs. The vertical bar | is read as “conditioned on” or “given”. In
conditional probability IP(A|B), the probability space is restricted to B and
we are interested in the relative probability assigned to the portion of A that
is contained in B.

Definition 12 (Conditional probability). Given two events A and B with
IP(B) > 0, the conditional probability of A given B has occurred is defined

27
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as

IP(A|B) = IP(A ∩ B)

IP(B)
.

Proposition 10 (Multiplication rule).

IP(A ∩ B) = IP(A|B)× IP(B).

Proposition 11 (Law of total probability). Let A1, ...,An be mutually ex-
clusive and exhaustive events. Then for any other event B

IP(B) =
n∑

i=1

IP(B|Ai)× IP(Ai).

Proof. Since the event B satisfies the equality

B = (B ∩ A1) ∪ (B ∩ A2) ∪ ... ∪ (B ∩ An).

The probability IP(B) can be written as

IP(B) = IP {(B ∩ A1) ∪ (B ∩ A2) ∪ ... ∪ (B ∩ An)} .

Since Ai’s are exclusive and exhaustive events, the sets B ∩ Ai are mutually
exclusive.

IP(B) =
n∑

i=1

IP(B ∩ Ai) =
n∑

i=1

IP(B|Ai)× IP(Ai).

Where in the last step, we applied the multiplication rule.

Remark 3. Notice that a simplified version of law of total probability can be
written as:

IP(B) = IP(B|A)IP(A) + IP(B|Ac)IP(Ac).

Based on the law of total probability, the probability of an event B is a
weighted average of the conditional probability of B given that event Ai has
occurred over all the possibilities of Ai.

3.2 Bayes’ theorem

Bayes’ Theorem1 for events gives the conditional probability IP(A|B) in terms
of the conditional probability IP(B|A).

1Thomas Bayes (1702-1761)
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Theorem 2 (Bayes’ theorem). Let A1, ...,An be mutually exclusive and ex-
haustive events with IP(Ai) > 0 for all i = 1, ..., n. Then for any other event
B with IP(B) > 0

IP(Aj|B) =
IP(Aj ∩ B)

IP(B)
=

IP(B|Aj)IP(Aj)∑n
i=1 IP(B|Ai)IP(Ai)

, j = 1, ..., n.

Similar to the law of total probability, Bayes’ theorem in the simple form
can be written as

IP(A|B) = IP(B|A)IP(A)
IP(B|A)IP(A) + IP(B|Ac)IP(Ac)

.

for IP(B) > 0.

Proof. Notice that

IP(A ∩ B) = IP(B ∩ A)

Using the multiplication rule

IP(A|B)IP(B) = IP(B|A)IP(A)

Therefore,

IP(A|B) = IP(B|A)IP(A)
IP(B)

Applying the law of total probability in the denominator proves the result.

Applications of Bayes’ theorem are versatile. A famous example of such
applications is related to the interpretation of screening tests used to detect
certain types of diseases such as cancer. Often screening tests are character-
ized by their sensitivity and specificity scores, which are widely used metrics
for measuring the performance of a test. Sensitivity of a test refers to the
probability that the test correctly identifies a patient as diseased when the
patient has in fact the disease. Specificity refers to the probability that
the test correctly identifies a patient as healthy when the patient is in fact
disease-free. In many rare diseases, the physician may be interested in know-
ing the probability that the patient has the disease given that the result of
the screening test is positive.
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Example 3.1. A population of 10000 patient is selected to study the perfor-
mance of a mammography screening test. Using a perfectly accurate Biopsy
test, it was revealed that only 10 of them had early stage breast cancer. Those
patients then underwent a mammography test. The results of the screening
test are presented in Table 3.1.

Diseased Healthy
Test is positive 9 50
Test is negative 1 9940

Table 3.1: Result of mammography screening test for 10000 patients.

During the annual population level screening for breast cancer, the mam-
mography test of a patient turned out to be positive. The physician who had
access to the data on the performance of mammography test decided to com-
pute Prob{Patient has breast cancer|Mammography test is positive}.

To answer this question we use the following notation:

Events: T+: Test positive, T−: Test negative, D: Diseased, H: Healthy.
From the table we can compute the joint distributions:

IP(T + ∩D) = 0.0009, IP(T + ∩H) = 0.005, IP(T − ∩D) = 0.0001, and
IP(T − ∩H) = 0.994.

To compute the marginal probabilities, we apply the law of total probabil-
ity.

IP(T+) = IP(T + ∩D) + IP(T + ∩H) = 0.0059.

IP(T−) = IP(T − ∩D) + IP(T − ∩H) = 0.9941

IP(D) = IP(D ∩ T+) + IP(D ∩ T−) = 0.001

IP(H) = IP(H ∩ T+) + IP(H ∩ T−) = 0.999

It is also easy to observe that IP(T + |D) = 0.9. Notice that since it is
a conditional probability, the universe is restricted to the cases which are
Diseased.

Applying Bayes’ theorem, we obtain

IP(D|T+) =
IP(D ∩ T+)

IP(T+)
=

.0009

.0059
= 0.15%
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□

The low probability of being cancerous given mammography was positive
infers that additional evidence should be taken into account before making
concrete conclusions about the presence of disease even if the test sensitivity
to find the positive cases is high.

Example 3.2 (Monty Hall Problem). The classical version of the problem
is described as follows: A contestant is shown three identical doors. Behind
one of them is a car. The other two conceal goats. The contestant is asked
to choose, but not open, one of the doors. After doing so, Monty, who knows
where the car hides, opens one of the two remaining doors. He always opens
a door he knows to be incorrect (goat-concealing doors will be referred to as
the incorrect doors), and randomly chooses which door to open when he has
more than one option (which happens on the occasion where the contestant’s
initial choice conceals the car). After opening an incorrect door, Monty gives
the contestant the option of either switching to the other unopened door or
sticking with their original choice. The contestant then receives whatever is
behind the door they choose. What should the contestant do?

Initially when the contestant chooses the door, he has a 1
3
chance of pick-

ing the car. This must mean that the other doors combined have a 2
3
chance

of winning. But after Carol opens a door with a goat behind it, how do the
probabilities change? Well, everyone knows that there is a goat behind one
of the doors that the contestant did not pick. So no matter whether the con-
testant is winning or not, Carol is always able to open one of the other doors
to reveal a goat. This means that the contestant still has a 1

3
chance of win-

ning. Also the door that Carol opened has no chance of winning. What about
the last door? It must have a 2

3
chance of containing the car, and so the

contestant has a higher chance of winning if he or she switches doors.

We will denote Ci the event that the car is behind door i and Mi the event
that Monty opens door i. Now imagine a modified version of this problem
with the following information:

IP(M2|C1) = 1/2,

IP(M2|C2) = 0,

IP(M2|C3) = 1,
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The prior probability that the car is behind any door is 1/3. That is
IP(C1) = IP(C2) = IP(C3) = 1/3.
Suppose the contestant picks door 1 and Monty opens door 2. We are inter-
ested in the probability that the car is behind the any of the doors (1 and 3)
given that Manty opened 2.

By law of total probability, the probability that Monty opens door 2 is

IP(M2) = IP(M2|A)× IP(A) + IP(M2|B)× IP(B) + IP(M2|C)× IP(C)

= 1/6 + 0 + 1/3 = 1/2.

By Bayes rule

IP(C1|M2) =
IP(M2|C1)× IP(C1)

IP(M2)

= (1/6)/(1/2) = 1/3

IP(C3|M2) =
IP(M2|C3)× IP(C3)

IP(M2)

= (1/3)/(1/2) = 2/3.

This example shows that given the circumstances, it is wise for the contestant
to change his choice.

□

Example 3.3. In a city 95% of the cabs are green and 5% are blue. A
colorblind eyewitness observes a hit-and-run cab accident, and reported the
car involved in the accident to be blue. Further investigations showed that
the eyewitness correctly identifies the colors only 80% of the time. What is
the probability that the cab actually was blue?
Let B and G represent the event that the color of the car involved was Blue
and Green cab respectively. Let b and g be the event that the eyewitness
reported a Blue and Green cab respectively. Using these notations, IP(b|B) =
IP(g|G) = 0.8 and therefore IP(b|G) = 0.2. Using Bayes’ theorem,

IP(B|b) =
IP(b|B) · IP(B)

IP(b|B) · IP(B) + IP(b|G) · IP(G)

=
0.8 · 0.05

0.8 · 0.05 + 0.2 · 0.95
= 0.173.

□
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Example 3.4. 2 Stores A, B and C have 50, 75 and 100 employees respec-
tively. and respectively, 50%, 60% and 70% of the employees are women.
Resignations are equally likely among all employees, regardless of sex. One
employee resigns and this is a woman. What is the probability that she works
in store A?

Let W be the event that a woman employee resigns from anywhere, and
let A, B and C denote the event that a randomly selected employee works
at the respective store. Then IP(A) = 50/225, IP(B) = 75/225 and IP(C) =
100/225. Likewise the probabilities of resignation of a woman from a store
is given by the information to be IP(W |A) = 0.50, IP(W |B) = 0.60, and
IP(W |C) = 0.70. Then we can use Bayes Theorem (re-deriving it in the
process of using it):

IP(A|W ) =
IP(A ∩W )

IP(W )

=
IP(W |C)IP(C)

IP(W |A)IP(A) + IP(W |B)IP(B) + IP(W |C)IP(C)

=
(0.50)(50/225)

(0.50)(50/225) + (0.60)(75/225) + (0.70)(100/225)
= 0.17857

Example 3.5. In answering a question on a multiple choice test, a stu-
dent either knows the answer or the student just guesses. Suppose that the
probability that the student knows the answer is 0.75, and the probability the
student doesn’t know the answer and guesses is 0.25. Assuming that there
are 5 choices for each multiple-choice question, then we take the probability
that the student who guesses will be correct is 1/5 = 0.20. What is the con-
ditional probability that the student knew the answer to a question given that
the student answered it correctly?

Let C be the even that the student answers the question correctly. Let K
be the probability the student knows the answer. IP(C|K) = 1.

2Adapted from A First Course in Probability by Sheldon Ross, Macmillan, 1976, Chap-
ter 3, Problem 18, page 80.
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IP(K|C) =
IP(K ∩ C)

IP(C)

=
IP(C|K)IP(K)

IP(C|K)IP(K) + IP(C|Kc)IP(Kc)

=
0.75

0.75 · 1 + 0.25 · 0.20
= 0.9375

3.2.1 A side Note About Bayesian Inference

Bayesian inference is one of the most popular techniques in Bayesian statistics
to make inference about the distributions. To clarify, suppose we guess that
the distribution of a population is normal. This wild guess is our prior
knowledge about the underlying distribution of the population. We start too
draw samples from the population and based on the drawn samples we update
our assumption about the population distribution. Our updated belief is
called posterior.

In the Bayes’ theorem, if we let B to be some data and A to be a model,
we can use the probability Prob(data|model) from the statistical model to
obtain the inference Prob(model|data).

Prob(model|data) = Prob(data|model) Prob(model)

Prob(data)
.

Where, Prob(data|model) is called likelihood, Prob(model) is called prior and
Prob(model|data) is called posterior.

Now that we’ve introduced the notion of conditional probability, we can
see how it is used in real world settings. Conditional probability is at the
heart of a subject called Bayesian inference, used extensively in fields such as
machine learning, communications and signal processing. Bayesian inference
is a way to update knowledge after making an observation. For example, we
may have an estimate of the probability of a given event A. After event B
occurs, we can update this estimate to IP(A|B). In this interpretation, IP(A)
can be thought of as a prior probability: our assessment of the likelihood
of an event of interest A before making an observation. It reflects our prior
knowledge. IP(A|B) can be interpreted as the posterior probability of A after
the observation. It reflects our new knowledge.
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3.3 Independence Of Events

In order to clarify the concept of independence, think of the following exam-
ple. In a coin flip experiment, you flip a fair coin 10 times and you observe all
of them as tails. You start to wonder whether observing 10 tails makes the
next flip more likely to be a head. In fact the answer is no. No matter how
many tails you observed, each flip has exactly 50% chance of being a head.
This implies that in coin flip experiment the outcomes are independent. One
other way to visualize this experiment is as follows. Suppose a box contains
two one sided coins. Each coin has only one side, one coin is head and the
other is a tail. Each time you draw one coin randomly and after recording
the coin type, you return the coin into the box. This experiment is in fact
equivalent to the fair coin flip where each side is equally likely. Since in each
draw, the sample space remains the same, i.e., Ω = {H,T}, it is called exper-
iment with replacement. A dice roll is also another example of experiment
in which the outcomes in each roll are independent.

On the other hand, in the experiment of dealing cards, if all of the first
10 cards turn out to be diamonds, what can we say about the probability
that the next card will be a diamond? Obviously, in a deck of 52 cards,
given that the first 10 were all diamonds makes the next card less likely
to be a diamond. Before the experiment begins the probability is 13/52 =
0.25, whereas after first 10 appearance of diamonds, only 3 diamonds remain
among the remaining 42 cards, making the probability of the next one to be
a diamond as small as 3/42 = 0.07. In other words, in this experiment the
outcomes in each dealing of the card is no longer independent of the previous
cards. It is easy to observe that in this experiment the sample space does
not remain the same after each dealing of the cards. This is an example of
experiments without replacement.

Definition 13 (Independent Events). Two events A and B are independent
if IP(A|B) = IP(A).

Note that if B is independent of A, then A is independent of B.

Proposition 12. A and B are independent if and only if

IP(A ∩ B) = IP(A)× IP(B).

Proof. From the multiplicative rule,

IP(A ∩ B) = IP(A|B)× IP(B)
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Since A and B are independent, by definition IP(A|B) = IP(A), which proves
the result.

IP(A)× IP(B) = IP(A|B)× IP(B)

= IP(A ∩ B)

Where the first equality is by definition of independence.

Definition 14. Events A1, ...,An are mutually independent if for every k =
2, 3, . . . , n and every subset of indices i1, i2, ..., ik

IP(Ai1 ∩ Ai2 ∩ ...Aik) = IP(Ai1)× IP(Ai2)× ...IP(Aik).

As an example, suppose n = 3, which produces three events A1,A2,A3.
Also n = 3 results in k = 2, 3.
When k = 2,

IP(A1 ∩ A2) = IP(A1)× IP(A2)

IP(A1 ∩ A3) = IP(A1)× IP(A3)

IP(A2 ∩ A3) = IP(A2)× IP(A3)

When k = 3,

IP(A1 ∩ A2 ∩ A3) = IP(A1)× IP(A2)× IP(A3)

= IP(A1 ∩ A2)× IP(A3).

= IP(A1 ∩ A3)× IP(A2).

= IP(A2 ∩ A3)× IP(A1).

Definition 15 (Conditional independence). Events A and B are said to be
conditionally independent given C when

IP(A ∩ B|C) = IP(A|C)IP(B|C).

Notice that

IP(A ∩ B|C) =
IP(A ∩ B ∩ C)

IP(C)

=
IP(A|B ∩ C)IP(B ∩ C)

IP(C)

=
IP(A|B ∩ C)IP(B|C)IP(C)

IP(C)

= IP(A|B ∩ C)IP(B|C)
= IP(A|C)IP(B|C)
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where the last equality follows from the fact that given C, A is conditionally
independent of B, i.e., IP(A|B ∩ C) = IP(A|C).
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